Лекция N41.Линия без искажений. |
Пусть сигнал, который требуется передать без искажений по линии, является периодическим, т.е. его можно разложить в ряд Фурье. Сигнал будет искажаться, если для составляющих его гармонических затухание и фазовая скорость различны, т.е. если последние являются функциями частоты. Таким образом, для отсутствия искажений, что очень важно, например, в линиях передачи информации, необходимо, чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием, поскольку только в этом случае, сложившись, они образуют в конце линии сигнал, подобный входному. Идеальным в этом случае является так называемая линия без
потерь, у которой сопротивление Действительно, в этом случае
т.е. независимо от частоты коэффициент затухания
Однако искажения могут отсутствовать и в линии с потерями. Условие передачи сигналов без искажения вытекает из совместного рассмотрения выражений для постоянной распространения
и фазовой скорости
Из (1) и (2) вытекает, что для получения
Как показывает анализ (3), при
Линия, параметры которой удовлетворяют условию (4), называется линией без искажений. Фазовая скорость для такой линии
и затухание
Следует отметить, что у реальных линий (и воздушных, и кабельных)
Уравнения линии конечной длины Постоянные
определяются на основании граничных условий.
Тогда из (5) и (6) получаем
откуда
Подставив найденные выражения
Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке
линии по их известным значениям в начале линии. Обычно в практических
задачах бывают заданы напряжение
Обозначив
откуда
После подстановки найденных выражений
Уравнения длинной линии как четырехполюсника В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями
Эти уравнения соответствуют уравнениям симметричного четырехполюсника,
коэффициенты которого Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения.
Определение параметров длинной линии из
опытов Как и у четырехполюсников, параметры длинной линии могут быть определены из опытов холостого хода (ХХ) и короткого замыкания (КЗ). При ХХ
При КЗ
На основании (13) и (14)
и
откуда
Выражения (15) и (16) на основании данных эксперимента позволяют
определить вторичные параметры
Линия без потерь Линией без потерь называется линия, у которой первичные параметры
откуда Раскроем гиперболические функции от комплексного аргумента
Тогда для линии без потерь, т.е. при
Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:
Строго говоря, линия без потерь (цепь с распределенными параметрами без
потерь) представляет собой идеализированный случай. Однако при выполнении
Стоячие волны в длинных линиях Как было показано выше, решение уравнений длинной линии можно представить в виде суммы прямой и обратной волн. В результате их наложения в цепях с распределенными параметрами возникают стоячие волны. Рассмотрим два предельных случая: ХХ и КЗ в линии без потерь, когда поглощаемая приемником активная мощность равна нулю. При ХХ на основании уравнений (17) и (18) имеем
откуда для мгновенных значений напряжения и тока можно записать
Последние уравнения представляют собой уравнения стоячих волн, являющихся результатом наложения прямой и обратной волн с одинаковыми амплитудами.
При КЗ на основании уравнений (17) и (18)
откуда для мгновенных значений можно записать
т.е. и в этом случае напряжение и ток представляют собой стоячие волны, причем по сравнению с режимом ХХ пучности и узлы напряжения и тока соответственно меняются местами. Поскольку в узлах мощность тождественно равна нулю, стоячие волны в передаче энергии вдоль линии не участвуют. Ее передают только бегущие волны. Чем сильнее нагрузка отличается от согласованной, тем сильнее выражены обратные и, следовательно, стоячие волны. В рассмотренных предельных случаях ХХ и КЗ имеют место только стоячие волны, и мощность на нагрузке равна нулю.
Литература
Контрольные вопросы и задачи
|